
ACL Viewer
ACL Handling in Java and on the Web

Zachary Rice
Fermilab - Acclerator Division - Controls
Parkland College - CCI

Contact Information:
Phone: 217 714 5103
Email: zachrice9@gmail.com

Abstract

A discourse on the development of an ACL(Accelerator Command
Language) application made in Java and Google Web Toolkit. ACL
Viewer is an application designed for user friendly ACL accessibil-
ity. This discussion covers an introduction to ACL, the functional-
ity of ACL Viewer, the constituents that makeup ACL Viewer, and an
overview of the communications between the user and server.

Introduction

This project was prompted due to the lack of simple cross platform
ACL(Accelerator Command Language) script handling applications
available at Fermilab.

1. Acl Viewer Application
• Developed in Java (cross-platform).
• Scripting and Logging functions.
• Access to all ACL commands.

2. Acl Viewer Web Application
• Developed with Google Web Toolkit
• Only access to read command

ACL

ACL is the Accelerator Command Language authored by Fermilab’s
Brian Hendricks.

• ACL is a Scripting language.

• Interface with ACNET devices throughout the lab.

• About one hundred commands.

• Easy syntax.

• Ability to define variables and symbols.

• Device oriented commands like: read, set, reset
• Includes control commands like: loop, while, return, wait

Simple example script:

wait\sec 5;read G:SCTIME

This script tells the OAC to start the following task: wait five second,
then read the time in this Super Cycle.

Figure 1: Script Tab (left); Log Tab (right)

GUI
The GUI I developed is clean and simple as seen in Figure 1.

Features
• User friendly.
• Script tab has two large text fields.
• Log tab has one large table.
• Ability to save/load scripts.
• Ability to save/load logs.
• Area to define symbols
• Mouseover to view ACL scripts in log tab.

Software/Hardware Interface
The class files that makeup my application are as followed; AppGUI,
Reading, Setting, ACL, and Convert. Simplifying class
processes: AppGUI creates the GUI and initializes tasks. ACL con-
solidates date from Reading and Setting then displays it to the
GUI. Reading and Setting sends and receives data. Before the
user sends a script down to the OAC, a safe path needs to be estab-
lished as seen in Figures 2 and 3.

Java App
(user)

ACL Server
(OAC)

Figure 2: User requesting path

Java App
(user)

ACL Server
(OAC)

Script

Figure 3: Sending path back to user

Script comes into OAC then gets converted to an ACNET message
which is sent to CENTRA. CENTRA starts an ACLD tasks and be-
gins to fetch data from devices specified in the script (Figure 4). Once
this process is completed it will be sent back up the same path to be
displayed by on the GUI as seen in Figure 5.

Front End 
Devices

'CENTRA'

A
C
N
E
T

Return

Script

ACL Server
(OAC)

Java App
(user)

Figure 4: Script is being send down to the OAC where it will be converted into an
ACNET message which is then sent down to CENTRA. CENTRA will then perform
the tasks.

Front End 
Devices

'CENTRA'

A
C
N
E
T

ReturnACL Server
(OAC)

Java App
(user)

Return

Figure 5: Return data is sent back up through the same path

Scripting
Reading and Setting have a main function called ’readMe’ and
’set’ respectively. ACL makes two readings by calling ’readMe’ twice
which returns two arrays of doubles. In addition to the ACL script, the
arrays of doubles are used as parameters for Setting’s ’set’ method
in order to tell the OAC what task to execute.

The scripting process:
1. Make initial reading (slot)
2. Start while loop
3. Make second reading (selection)
4. Make setting with ACL script included
5. Start second while loop
6. Make third reading (data to be displayed after conversion)
7. Convert array of doubles to string
8. Display in GUI

Logging
As mentioned before the application has a logging functionality to
monitor ACL activity as seen in Figure 1(right). Logging requires mul-
tiple calls to Reading’s readMe method which returns an array of
doubles. One call to readMe will return a chunk of data correlating
with the five column headers. The amount of data that can be returned
by one call is limited by the OAC so making multiple calls is neces-
sary to fill the entire table. The basic framework to fill the table looks
something like:
while(no interruptions)

readings = read(params)
convert(readings)
fillTable

The program will exit the while loop once the readings return nothing.

Google Web Toolkit
In addition to the Java application, I developed a web application
made with Google Web Toolkit(GWT). Essentially, GWT converts
Java code to JavaScript allowing it to be launched on all
browsers.

• Similar GUI to Acl Viewer in Java (Figure 6).

• Communicates with a different ACL server (URL access).

• Limited to read command.

• No logging abilities.

Figure 6: GWT GUI in browser

Web App
(client)

App 
Implementation

(servlet)

URL
(ACL server)

Script

Figure 7: Sending script to URL ACL server

Web App
(client)

App 
Implementation

(servlet)

URL
(ACL server)

Return

Figure 8: Returning values to GUI

User sends script to http://www-bd.fnal.gov/cgi-bin/acl.pl?acl=[ACL
CODE] where ’ACL CODE’ is the formatted ACL script. Formatting
happens under the hood in the App implementation file.

References
[1] J. Patrick, Fermilab Control System(”ACNET”). Batavia, Illinois,

Feb 17, 2005.

[2] Andrey Petrov, Fermi National Accelerator Laboratory Accelera-
tor Controls Department Beyond ACNET: Evolution of Accelerator
Control System at Fermilab. SLAC March 17, 2009.

Acknowledgements
This work was supported in part by the U.S. Department of En-
ergy (DOE), Office of Science, Office of Workforce Development for
Teachers and Scientists (WDTS) under the Community College Intern-
ships (CCI) Program. I’d like to thank Fermilab, the Accelerator Divi-
sion, Linden Carmichael, Arden Warner, Brian Hendricks, Glen John-
son, and John DeVoy.


